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with x = 2, L = HMPA, x = 1, L = TMEDA or PMDETA, 
result in 83-95% yields from K-BuLi + NH4SCN + L reactions 
in hexane/toluene; thermodynamic (enthalpic and, possibly more 
important, entropic) parameters are also being calculated. 
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We report remarkable redox chemistry of an organodiruthenium 
complex in which reversible opening and closing of an eight-carbon 
chain is accompanied by formation and cleavage, respectively, of 
a metal-metal bond. A net two-electron transfer, accomplished 
either electrochemically or with a chemical redox agent, is an 
integral part of the reaction. This redox-initiated C-C bond 
activation may have relevance to the mechanism of the nickel-
catalyzed tetramerization of acetylene.1'2 

Earlier studies3 demonstrated that the pseudo-triple-decker4 

complexes Cp2M2(COt)5 (1: M = Co, Rh; see Scheme I) undergo 
substantial flattening of the bridging cyclooctatetraene ligand when 
oxidized by two electrons to give 2 (M = Co, Rh; n = 2). The 
two butadiene-like halves of the cot ring remain slightly twisted 
from coplanarity in 2.3b In a search for even more electron-de­
ficient members of this series, the oxidation of Cp2Ru2(COt) (3) 
was investigated. This diruthenium complex is isoelectronic and 
isostructural6 with 2 but is more readily oxidized since it is neutral. 

Solutions of 3 at 298 K in acetone/0.1 M Bu4NPF6 display an 
anodic wave of two-electron height at +0.04V versus SCE when 
scanned in CV5 experiments. A cathodic wave at -0.25 V arises 
from re-reduction of the oxidation product. Bulk coulometric 
oxidation of 3 released 2 faradays of charge and resulted in stable 
solutions of a red-brown dication, 4. The dication was isolated 
either from acetone with 2 equiv of [Cp2Fe] [PF6] as oxidant or 
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Figure 1. Molecular structure and labeling scheme for [C18H18Ru2] [P-
F6]2-0.5C6H6 (distances in A, angles in deg): Ru(l)-Ru(2), 2.7291 (4); 
Ru(I)-CNT(I), 1.868(5);Ru(2)-CNT(2), 1.881 (5); Ru(I)-Cu(Il) , 
2.131 (4); Ru(l)-C(12), 2.213 (5); Ru(l)-C(13), 2.181 (7); Ru(I ) -
Cu(14), 2.233 (8); Ru(l)-C(18), 2.066 (4); Ru(2)-C(ll) , 2.063 (4); 
Ru(2)-Cu(15), 2.228 (7); Ru(2)-C(16), 2.174 (7); Ru(2)-C(17), 2.216 
(6); Ru(2)-C(18), 2.143 (5); C(ll)-C(12), 1.417 (8); C(12)-C(13), 
1.407 (10); C(13)-C(14), 1.400 (8); C(14)-C(15), 1.491 (7); C(15)-C-
(16), 1.366 (8); C(16)-C(17), 1.408 (10); C(17)-C(18), 1.414 (8); C-
(11)-C(18), 3.195(8). C(l l )-Ru(l)-C(18), 99.1 (2); C( l l ) -Ru(2) -
C(18), 98.8 (2); Ru(I)-C(11)-Ru(2), 81.2 (2); Ru(l)-C(18)-Ru(2), 
80.8 (2); Ru(I)-C(11)-C(12), 74.1 (3); Ru(2)-C(ll)-C(12), 132.5 (4); 
Ru(l)-C(18)-C(17), 131.8 (4); Ru(2)-C(18)-C(17), 73.9 (3); C ( I l ) -
C(12)-C(13), 121.3 (4); C(12)-C(13)-C(14). 118.0 (5); C(13)-C-
(14)-C(15), 120.5 (5); C(14)-C(15)-C(16), 120.3 (5); C(15)-C(16)-
C(17), 118.2 (5); C(16)-C(17)-C(l8), 121.9(5). CNT(I)-Ru(I)-Ru-
(2)-CNT(2), -31.5 (4); C(11)-C(12)-C(13)-C(14), -13.3 (6); C-
(12)-C(13)-C(14)-C(15), -38.3 (6); C(13)-C(14)-C(15)-C(16), 152.3 
(6); C(14)-C(15)-C(16)-C(17), -36.7 (6); C(15)-C(16)-C(17)-C(18), 
-14.8 (6). 
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3, M = Ru, n « 0 

from dichloromethane with low-temperature electrolysis (4 pre­
cipitated nearly quantitatively from CH2Cl2 solutions of 3 elec-
trolyzed at 220 K). 

NMR spectra of the dication displayed an unusually low-field 
resonance in both 1H (5 13.4) and 13C {8 195) experiments.7 The 
carbon resonance was reminiscent of those observed for bridging 
carbons in "flyover" complexex8 and suggested that the eight-
carbon ring had been fractured in the dication. This suspicion 
was confirmed by X-ray crystrallography on crystals grown from 
nitromethane/benzene.9 

(7) NMR data for 4 (acetone-d6): 6 13.40 (d, J = 6.8 Hz, 2 H, 
R U 2 C W C H C H C H ) , 7.30 (dd, J = 6.8, 5.4 Hz, 2 H, R U 2 C H C W C H C H ) , 6.37 
(m, 2 H, R U 2 C H C H C W C H ) , 6.03 (s, 10 H, C5H5), and 4.64 (d, J = 7.6 Hz, 
2 H, R U 2 C H C H C H C W ) . 

(8) (a) Knox, S. A. R.; Stansfield, F. D.; Stone, F. G. A.; Winter, M. J.; 
Woodward, P. J. Chem. Soc, Chem. Commun. 1978, 221. (b) Knox, S. A. 
R.; Stansfield, F. D.; Stone, F. G. A.; Winter, M. J.; Woodward, P. / . Chem. 
Soc, Dalton Trans. 1982, 173. (c) Boileau, A. M.; Orpen, A. G.; Stansfield, 
R. F. D.; Woodward, P. Ibid. 1982, 187; (d) Green, M.; Kale, P. A.; Mercer, 
R. J. J. Chem. Soc, Chem. Commun. 1987, 375. 
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The main features of [Cp2Ru2(CgHg) ] 2 + (4) are as follows 
(Figure 1). The eight-carbon ring of the neutral precursor has 
opened, giving a chain whose termini now bridge the newly formed 
Ru-Ru bond. The metals have inserted into a C-C bond of the 
original cot ring and two new Ru-C <r bonds have formed. Each 
metal is bonded to five carbons of the chain (by two a and three 
T bonds) and to the other metal (Ru-Ru distance 2.7291 (4) A). 
The central structure is basically that of a ten-membered di-
metallacyclic ring; the Cp rings adopt a cis configuration. 

The flyover dication 4 shows CV behavior complementary to 
that of 3. Thus, it reduces at -0.28 V and has a coupled anodic 
wave at +0.02 V. Coulometric reduction of 4 in acetone consumes 
two electrons and gives solutions with the same electrochemical 
behavior as 3. Extraction of the reduced solutions with benzene 
allowed isolation of 3, confirming that reduction of 4 results in 
re-formation of the cyclooctatetraene ring. Thus, it is clear that 
3 and 4 constitute a chemically reversible redox couple involving 
an overall two-electron transfer.10 

Cp2Ru2(COt) j=s Cp2Ru2(C8Hg)2+ + 2e_ 

3 4 

Dimetallacycles have been viewed as key intermediates in the 
formation of cyclooctatetraenes from alkynes," accounting in part 
for the interest in flyover-type metallacycles.8'""13 Up to the 
present, however, no examples of reversible zipping and unzipping 
of the final C-C link of the n-carbon chain appear to have been 
reported.14 The present data show that electron-transfer processes 
may initiate such intramolecular coupling and uncoupling reac­
tions. This observation should spur investigations of the redox 
reactions of other metallacyclic complexes. 
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Synthetic receptors containing two aromatic (complexing) 
chromophores connected by a single spacer have been referred 
to as molecular tweezers} These nonmacrocyclic receptors can 
have distinct advantages over their cyclic relatives (cyclophanes2) 
in terms of the size and topology of the guest which can be 
complexed.3 Thus, a molecular tweezer with an ca. 7-A inter-
chromophore distance can complex guests of unrestricted length 
and width provided they have the thickness of a single aromatic 
ring. With respect to topology it is not surprising that both natural 
and synthetic DNA bis intercalators possess the molecular tweezer 
structure type.4"6 

Little is known about the structural and electronic requirements 
for optimum complexation by a molecular tweezer. Chen and 
Whitlock have shown that in aqueous medium the spacer unit 
should be rigid in order to prevent self-association of the com­
plexing chromophores.1 Molecular tweezers studied thus far have 
contained spacers of varying degrees of rigidity but none have 
preorganized the cavity for complexation since they are confor-
mationally mobile.1,5'6 The importance of preorganization in the 
complexation of metal ions by crown ethers is now well appreciated 
as a result of Cram's studies of spherands.7 

Herein we describe the synthesis of the first molecular tweezer 
1 in which a rigid spacer enforces a syn-cofacial orientation of 
the two complexing (acridine) chromophores. The acridine 
moieties in 1 show remarkable cooperativity in complexation while 

1a: R1FV = H 

1b: R = t-Bu, R' = Me 2 

1c: R1 R' = t-Bu 

a flexible, yet noncollapsing diacridine 7 complexes very weakly. 
The dibenz[c,/;]acridine spacer was chosen since its C-2 to C-12 
distance is 7.24 A and chromophores attached at these positions 
appeared likely to lie in parallel planes.8,9 The synthesis began 
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